

Metal-cored wire, high-alloved, soft-martensitic stainless

CI			

EN ISO 17633-A	EN ISO 17633-B	AWS A5.22 / SFA-5.22
T 13 4 M M12 2	TS 410NiMo-M M12 1 (mod.)	EC410NiMo (mod.)

Characteristics and typical fields of application

Metal-cored wire of T 13 4 M / EC410NiMo type for welding and repair welding of cast 13Cr-4Ni soft-martensitic stainless steels such as 1.4407 / UNS S41500. Applications are for instance turbine components in the hydropower industry. Easy handling and high deposition rate result in high productivity with excellent welding performance and very low spatter formation. The wire shows good wetting behavior and results in a smooth surface. The wide arc ensures even penetration and side-wall fusion to prevent lack of fusion. Additionally, precise alloy adjustment ensures very good weld metal impact toughness after heat treatment (e.g. in foundries). The diffusible hydrogen content is extra low with maximum 4 ml / 100 g to prevent cold cracking. Significant gains in productivity can be realized by higher deposition rates and reduced post weld grinding as compared to GMAW using solid wires.

Base materials

1.4313 X3CrNiMo13-4, 1.4317 GX4CrNi13-4, 1.4407 GX5CrNiMo13-4, 1.4414 GX4CrNiMo13-4 ACI Grade CA 6 NM, UNS S41500, J91540

Typical analysis						
	C	Si	Mn	Cr	Ni	Mo
wt%	0.023	0.7	0.9	12.2	4.6	0.6

Mechanical properties of all-weld metal - typical values (min. values)

Condition	Yield strength R _{p0.2}	Tensile strength R _m	Elongation A (L ₀ =5d ₀)	Impact energy ISO-V KV J	
	MPa	MPa	%	20°C	-20°C
a	745 (≥ 500)	900 (≥ 760)	16 (≥ 15)	55 (≥ 50)	50 (≥ 47)
a1	700	840	18		50

a annealed/tempered, 600° C for 2 h / furnace cooling to 300° C followed by air cooling - shielding gas M12 (Ar + 2.5% CO) at annealed/tempered, 580° C for 12 h / furnace cooling to 300° C followed by air cooling - shielding gas M12 (Ar + 2.5% $(20.5)^{\circ}$ CO)

Operating data

Polarity	DC +	Dimension mm
Shielding gas M12	M12	1.2
(EN ISO 14175)		1.6

Welding with conventional or pulsed power sources using DC+ polarity, but pulsed arc may be advantageous and especially when welding out of position. Forehand (pushing) technique preferred with a work angle of approximately 80° . Ar + 2 - 3% CO2 as shielding gas offers the best weldability. The gas flow should be 15 - 20 l/min and the wire stick-out 18 - 20 mm. When welding out of position, the metal-cored wires are similar to solid wires and pulsed arc welding is recommended. Recommended preheating and interpass temperatures in case of heavy wall thickness are $100 - 160^{\circ}$ C. The heat input should not exceed 1.5 kJ/mm. Tempering performed at $580 - 620^{\circ}$ C.

Approvals

CE