

Flux-cored wire, high-alloyed, creep resistant

Classifications

 EN ISO 17634-A
 EN ISO 17634-B
 AWS A5.29 / SFA-5.29

 T ZCrMo9VNb P M21 1 H5
 T 69 T1-1M21-9C1MV-H5
 E91T1-B91M-H4

Characteristics and typical fields of application

FOXcore C 9 MV RC is a rutile- basic flux cored wire for the welding of creep resistant, tempered 9 % chromium steels in turbine-, boiler- and pipework construction as well as in the foundry industry. The wire is especially designed for the ASTM steels T91 / P91. The flux cored wire is designed for out of position welding technology. The chemistry of the product is according to LOW NICKEL content requirements, meaning (Ni + Mn) < 1 wt.%.

Base materials

Similar alloyed creep resistant steels like

1.4903 X10CrMoVNb9-1, G-X12CrMoVNbN9-1

ASTM A335 Gr. P91, A336 Gr. P91, A369 Gr. FP91, A387 Gr. 91, A213/213M Gr. T91 A 234 WP91,

A182 F91

Typical analysis										
	Gas	С	Si	Mn	Cr	Ni	Мо	٧	Nb	N
wt%	M21	0.10	0.2	0.7	9.0	0.2	1.0	0.2	0.04	0.04

Mechanical properties of all-weld metal - typical values (min. values)

Condition	Yield strength R _{p0.2}	Tensile strength R _m	Elongation A (L ₀ =5d ₀)	Impact energy ISO-V KV J
	MPa	MPa	%	20°C
S	580 (≥ 565)	$720 \ (\geq 690 - 760)$	18 (≥ 14)	60 (≥ 32)
s1	590 (≥565)	730 (≥690 - 760)	18 (≥14)	40 (≥32)

s - stress relieved 760°C / 4 h / furnace down to 300°C / air (acc. EN-ISO) shielding gas Ar + 18% CO2

Operating data

Polarity	DC +	Dimension mm
Redrying	possible, 150°C/24 h	1.2
Shielding gas (EN ISO 14175)	M21	

Welding with conventional or pulsed power sources (preferably slightly trailing torch position, angle approx. 80°). Recommended stick out 15 - 20 mm and length of arc 3 – 5 mm. Preheating

and interpass temperature $200 - 300^{\circ}$ C ($392 - 572^{\circ}$ F). After welding, the weld joint should cool down below 80° C (176° F) to finish the martensite transformation. In case of greater wall thickness or complex components the possibility of residual stresses must be considered.

The following post weld heat treatment is recommended: annealing 760 °C (1400 °F)/min. 3h, max. 10h, heating and cooling rates below 550 °C (1022 °F) max. 150 °C (302 °F)/h, above 550 °C (1022 °F) max. 80 °C (176 °F).

Approvals

TÜV (19235)

s1 - stress relieved 760°C / 2 h / furnace down to 300°C / air (acc. AWS) shielding gas Ar + 18% CO2